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We investigate the behavior of  a magnetic field in a viscous fluid cosmological 
model where the free gravitational field is of  Petrov type D and the coefficient 
of  shear viscosity is proportional to the rate of  expansion in the model. Also 
discussed are the behavior of  the model when the magnetic field tends to zero 
and some other physical properties. 

1. INTRODUCTION 

Cosmological models which are anisotropic and homogeneous have a 
significant role in the description of the universe in the early stages of its 
evolution. A realistic treatment of the problem requires the consideration 
of a material distribution other than a perfect fluid. In the early stages of 
the universe, with radiation in the form of photons as welt as neutrinos 
decoupled from matter, it behaved like a viscous fluid. It is also conjectured 
that there was a strong magnetic field contributing to the total energy of 
the system, and the coefficient of shear viscosity decreases as the universe 
expands. It is therefore reasonable to assume that the coefficient of shear 
viscosity is proportional to the rate of expansion. 

Roy and Prakash (1976, 1977) obtained a viscous fluid cosmological 
model of plane symmetry. Bali (1985) obtained an expanding and shearing 
magnetoviscous fluid cosmological model in general relativity. Bali and 
Tyagi (1987) obtained a viscous fluid cosmological model of cylindrical 
symmetry in the presence of a magnetic field in which the coefficient of shear 
viscosity is assumed to be constant. In this paper, we obtain a magnetized 
viscous fluid cosmological model in which the coefficient of shear viscosity 
is proportional to the rate of expansion and the free gravitational field is 
that of Petrov type D. The distribution consists of an electrically neutral 
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viscous fluid with an infinite electrical conductivity in the presence of a 
magnetic field. The various particular cases in which the magnetic field or 
viscosity or both tend to zero are also discussed. 

The space-time is taken in the form 

ds 2= A 2 ( d x 2 - d t 2 ) +  B 2 dy2 + C 2 dz 2 (1) 

where A, B, and C are functions of t alone. The energy-momentum tensor 
is taken to be the sum of the energy-momentum tensors M u corresponding 
to a viscous fluid (Landau and Lifshitz, 1963) and Eu, the electromagnetic 
field (Lichnerowicz, 1967), given by 

MJi = (e  + p )viv j + PgJi - ( v{;v~i + vJvlvi;t 

+ viv'v~,)- (~ -~n)vb(g~+ viv j) (2) 

and 

E4 = 4{Ihl2(v,v j +�89 J) - hih j}  ( 3 )  

In the above e is the density, p is the pressure, ~7 and ~" are the two 
coefficients of  viscosity, and v ~ is the flow vector satisfying the equation 

guvivi  = - 1 (4) 

/2 being the magnetic permeability and hi the magnetic flux vector defined 
by 

where Fk~ is the electromagnetic field tensor and 8Uk I is the Levi-Civita 
tensor density. A semicolon stands for covariant differentiation. We take 
the incident magnetic field to be in the direction of the x axis, so that hi # 0, 
h2 = 0 = h3 = h4. This leads to F]2 -- 0 - F13 by virtue of equation (5). Also, 
F~4 = F24 = Fa4 = 0 due to the assumption of infinite conductivity of the fluid. 
Hence, the only nonvanishing component  of  F u is F23. The first set of 
Maxwell 's equations 

FU;k + Fjk;, + Fk,;j = 0 (6) 

leads to F23 ~-- const = H (say). We also assume the coordinates to be comov- 
ing, so tha t  v l = 0 = v  2 = v  3and  v 4=1 /A .  

The field equations 

R { -  �89 + Ag~ = -8~rT J (7) 
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for the line element (1) are 

1 ( B44 C44 B4C4 "t- A4B4 A4C4~ 
A --5 \ B C BC AB + A C  ] - A  

= 8"n'[ p 2"qA4 2 t H2 

A 2 C A ~- - A  

=8"rr[p 2rIB4 (~ 2~?)vlt-~ H2 
A B  - 3  212B5-C ~ ] (9) 

A 2 B A + - A  

2 H z 

1 (A4B4+A4C4 B~C4~+A__8~ E+ 
A 2 \  AB A C  + BC / 212--~C i (11) 

2. S O L U T I O N  OF THE FIELD E Q U A T I O N S  

Equations (8)-(11) are four equations in five unknowns, A, B, C, e, 
and p. For the complete determination of the set, we assume that the 
space-time is Petrov type D. This requires that 

12 13 C12 = Cl3 (12) 

The condition is satisfied if B = C. However, we shall assume that A, B, 
and C are unequal due to the assumed anisotropy. From equations (7)-(9), 
we have 

and 

(aq +an(~,+Cq B4, B4C4 
A ] 4  A \ B  --C] B BC 

[ B4 A4\ 8 ~ H 2 A 2 
= 1 6 ~ ' q A ~ - f f - - X )  12 B2C 2 (13) 

c44=16  A(  
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Now, the condition C] 2 = C~1~ leads to 

B44 C44..}-2A4(C4-B4)~.O (15) 
B C- -A\C B] 

From equations (14) and (15), we have 

( - ~ - ~ )  (8r + ~ ) = 0  (16) 

since B # C; hence, from equation (16), we have 

8~BA + A4/A = 0 (17) 

Here two cases arise: (i) rt = const, (ii) ~//0 = const = l (say). Considering 
case (i), the model has already been studied by Bali and Tyagi (1987). 
Hence we consider the case (ii), which leads to 

I (A4+B4+C4~ (18) 
n = A \ A  B C/  

Equations (17) and (18) lead to 

A4 [ B4 C4~ 
~ -  = -/3 ~ - + - ~ - )  (19) 

where 

and 

[3 =8rrl/(8rrl+l) (20) 

Putting BC =/~ and B/C = v in equations (14) and (19), we have 

(pa,4/v)4 = 2 A4 (21) 
]3,/-/4/ V A 

A4 P~4 
fl (22) 

A /x 

Equation (22) gives, after integration, 

A = y~-~ 

where y is a constant of integration; equation (21) leads to 

V__~ 4 = k2/./, - (2 j3+1)  
/ ]  

where k 2 = m 2 y  2 and m 2 is a constant of integration. 

(23) 

(24) 
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Now putting BC = p., B/C = v, and using equations (23) and (24) in 
equation (13), we have 

2 2 1 2 ]d, aG q3 r,.<:: ,.<4 k2(2/3+1). (2~-I-I) 

,,.< ,.< , , - ' 7 - 7 L 7 -  

1//-~]+ k 4 -2~2r + 2k21x-2(zn+l)/*4) 
- - i T  " 4 ~-  

/. /~ 2 /,.L -(2/3 + 1 ) ]~  / -2 ( /3+1)  (25) 

which leads to 

/~/,44 + 2/3/X 4 LT 2 -2/3 
/3 + 1/2/~ = 0 (26) 

where L= 8rrH2//~; equation (22) leads to 

LT 2 /,-2/3-1 ~44 q- 2/3/* 2 (27) 
/3+1/2 

Inser t ing/~4=f(>)  and >44=ff ' in (27), we have 

f=  sll2 [ L,y2 ] 1/2 
L s/3(/3 + 1/2)/x-2/3 + Jld~'4/3 (28) 

where S is a constant of integration. 
From equations (28) and (24), we have 

v=  N /,~-/3 + /,-2/3_~ S / 3 ( ~ 1 / 2 ) J  J (29) 

where N is a constant of integration. 
Hence 

A2= ,)/2t. L -2/3 (30) 

,y2 L ]112~-k=1/3 s'/2 
B2=l, zN{tt-/3 +[tz-zt3 +S/3(-dT-1/2).] J (31) 

s/3(F+i/z)J (32) 
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After suitable transformation of coordinates, the metric reduces to the form 

ds2= ,y2 T2/3 [ dX2 - dT2 T_43]] 
S[ Ly2T2~/ S/3(/3 + 1/2) + 

q_2t+kz/~sl/Z T T-O+ T-2~ +S/3(-~+1/2) j d Y  2 

T-2  +s/3(- T1/21J az (33) 4 2L+kV~S'/2 

where N = 2 L+k'-/r 
In the absence of a magnetic field, the metric (33) reduces to  the form 

ds 2 = y2T-2" (  dX2 dT2 ST_4~ J q- T" 2t'2/t~s'/z(2T-~) -k2/~sl/2 d Y  2 

T 
+ ~  (2T-~)  k2/~s'/2 dZ  2 (34) 

which in the absence of viscosity reduces to the form 

ds 2 = ( d X  2 - d T  2) + T 1+k2/sl/2 d y 2 +  T ~-k2/s'/2 dZ  2 (35) 

3. S O M E  P H Y S I C A L  A N D  G E O M E T R I C A L  F E A T U R E S  

The pressure and density for the model (33) are given by 

1 
8~rp - 4y2TZ(1_r [(4/3 - k4)ST -4/3 -Ff 2] 16~'/3r/f,y Tl-/3 

2 8~H2 
+ 8 ~r (~" - 3"q)'O//+ 2 - ~ -  A 

and 

where 

1 8~'H 2 
8~'e - [ f2 (1-4 /3)  - K 4 S T  -4t3 ] - ~ _---5-_-_-_-_-_-_-~+ A 

4T2 T2(1-t3) ztx l - 

r LT2T_2 ~ ST_413] 1/2 

The model (33) has to satisfy the reality conditions (Ellis, 1971) 

(i) e + p > 0  

(ii) e + 3 p > 0  

(36) 

(37) 

(38) 

(39) 

(40) 
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Condition (i) leads to 

1 
16~ry2 T2~_O)[(2/3 - ka)ST -4~ +f2(1-2 /3) ]  

2/3frt (~._~rl)  r/ H 2 
> TT l-~ I 2 f iT  2 

which is satisfied when /3 < 1, 1 > 0; condition (ii) leads to 

1 
8 ~.y2 T2~, -e ) [ (3/3 - k 4 ) S T  -4~ +f2(  1 -/3 ) ] 

6fif~7 ~_ 3 ( ~ _ ~ 7 )  ~ +  __~2 > 2 A 
TT 1-~ t /x~ 

which gives the condition on A. 
Here 

(41) 

(42) 

~7 = lO (43) 

f l - / 3  
0 - (44) y T 1-B 

The rotation ~o is identically zero and the shear is given by 

f 2  $l/2k 4 

o -2 -- 12y2 T2(l_~) [2/32+8/3 - 1]+ 4y2T2O+~ ) (45) 

The nonvanishing components of the conformal curvature tensor are 
given by 

12 13 _1/-- ,23 
C t 2 =  C 13  ~-~- 2 ',..-, 23 

1 
- 1 2 72T2(~_r  -4~] (46) 

For large values of T, the space-time is conformally fiat. The model starts 
expanding at T = 0 and goes on expanding indefinitely and the expansion 
stops for large values of T. From equations (37) and (44), we find that 
/3 < 1, which leads to y > 0 and I>  0. Since limr+oo (o-/0)# 0, the model 
does not approach isotropy for large values of T. 

In the absence of a magnetic field, the components of the conformal 
curvature tensor are given by 

S 
12 13 _ _ 1 ( " , 2 3  [4/32+4/3+1 _ k  4] 

C 1 2  = C13  = 2~,.., 2 3 -  1 2 y 2 T 2 0 + ~ )  

S(1 - k 4) 
- 12y2T ~ (absence of viscosity) 
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The scalar of  expansion in the absence of  a magnetic field is given by 

(1 - ]3 )~,/~ 
O -  

TTI+/3 

which tends to zero for large values of  T. We notice that the isotropy is not 
attained for large values of  T in the absence of  a magnetic field also. 
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